Energetics of hydrogen bond network rearrangements in liquid water.

نویسندگان

  • Jared D Smith
  • Christopher D Cappa
  • Kevin R Wilson
  • Benjamin M Messer
  • Ronald C Cohen
  • Richard J Saykally
چکیده

A strong temperature dependence of oxygen K-edge x-ray absorption fine structure features was observed for supercooled and normal liquid water droplets prepared from the breakup of a liquid microjet. Analysis of the data over the temperature range 251 to 288 kelvin (-22 degrees to +15 degrees C) yields a value of 1.5 +/- 0.5 kilocalories per mole for the average thermal energy required to effect an observable rearrangement between the fully coordinated ("ice-like") and distorted ("broken-donor") local hydrogen-bonding configurations responsible for the pre-edge and post-edge features, respectively. This energy equals the latent heat of melting of ice with hexagonal symmetry (ice Ih) and is consistent with the distribution of hydrogen bond strengths obtained for the "overstructured" ST2 model of water.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum effects of hydrogen nuclei on a structure and a dynamical rearrangement of hydrogen-bond networks

To understand anomalous energetics and dynamics in water, nuclear quantum effects such as zero-point energy and delocalization of wave packets(WPs) representing water hydrogen atoms should be essential. However, since quantum calculations of many-body dynamics are highly complicated in general, none has yet directly viewed the quantum WP dynamics of hydrogen atoms in liquid water. Our semiquant...

متن کامل

Transport of a Liquid Water-Methanol Mixture in a Single Wall Carbon Nanotube

In this work, a molecular dynamics simulation of the transport of water - methanol mixture through the single wall carbon nanotube (SWCNT) is reported. Methanol and water are selected as fluid molecules since water represents a strongly polar molecule while methanol is as an intermediate between polar and strongly polar molecules. Some physical properties of the methanol-water mixture such as r...

متن کامل

Structural rearrangements in water viewed through two-dimensional infrared spectroscopy.

Compared with other molecular liquids, water is highly structured because of its ability to form up to four hydrogen bonds, resulting in a tetrahedral network of molecules. However, this underlying intermolecular structure is constantly in motion, exhibiting large fluctuations and reorganizations on time scales from femtoseconds to picoseconds. These motions allow water to play a key role in a ...

متن کامل

Relevance of hydrogen bond definitions in liquid water.

To evaluate the relevance of treating the hydrogen bonds in liquid water as a digital (discrete) network and applying topological analyses, a framework to optimize the fitting parameters in various hydrogen bond definitions of liquid water is proposed. Performance of the definitions is quantitatively evaluated according to the reproducibility of hydrogen bonding in the inherent structure. Param...

متن کامل

Unified description of temperature-dependent hydrogen-bond rearrangements in liquid water.

The unique chemical and physical properties of liquid water are a direct result of its highly directional hydrogen-bond (HB) network structure and associated dynamics. However, despite intense experimental and theoretical scrutiny spanning more than four decades, a coherent description of this HB network remains elusive. The essential question of whether continuum or multicomponent ("intact," "...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Science

دوره 306 5697  شماره 

صفحات  -

تاریخ انتشار 2004